
Workshop on Asynchronous Many-Task Systems
2023

Venue:
Center of Computation & Technology

Louisiana State University

February 15-17, 2023

This workshop is sponsored by

• Louisiana State University Center for Computation & Technology

• Tactical Computing Labs

• Hewlett Packard Enterprise

• POSE: Phase I: Constellation: A Pathway to Establish the STE——AR Open-
Source Organization (NSF award 2229751)

ii

Abstract

As our compute capacity grows, science simulations are not only becoming bigger,
but more complex. Simulations are carried out at multiple scales and using multiple
kinds of physics at once. Boundaries are irregular, grids are irregular, computational
domains can be dynamic and complex. In such scenarios, the ideal way to parallelize
often cannot be statically determined. At the same time, hardware is becoming
more heterogeneous and difficult to program. Increasingly, scientists are turning
to asynchronous, dynamic parallelism in order to make the best use of increasingly
challenging hardware. As a result, numerous frameworks, platforms, and specialized
languages have sprung up to answer this need.

The objectives of this workshop are to bring together experts in asynchronous
many-task frameworks, developers of science codes, performance experts, and hard-
ware vendors to discuss the state-of-the-art techniques needed to program, analyze,
benchmark, and profile these codes to achieve maximum performance possible from
modern machines. This workshop will promote a dialogue between these commu-
nities, and help identify challenges and opportunities for advancement in all the
disciplines they represent.

Organizing committee

• Patrick Diehl, Louisiana State University

• Hartmut Kaiser, Louisiana State University

• Steven R. Brandt, Louisiana State University

• Gerald Baumgartner, Louisiana State University

• J. “Ram” Ramanujam, Louisiana State University

Scientific committee

• Erwin Laure, Max Planck Computing & Data Facility, Germany

• Christoph Junghans, Los Alamos National Laboratory

• Bryce Adelstein Lelbach, NVIDIA

• Thomas Fahringer, University of Innsbruck, Austria

• Laxmikant V. Kale, University of Illinois at Urbana-Champaign

• Alex Aiken, Stanford

• Brad Chamberlain, HPE

iii

Technical program chair

• Patrick Diehl, Louisiana State University (USA)

• Hartmut Kaiser, Louisiana State University (USA)

• Peter Thoman, University of Innsbruck (Austria)

Technical program

• Bita Hasheminezhad, NASA Ames Research Center (USA)

• Irina Demeshko, NVIDIA

• Brad Richardson, Sourcery Institute (USA)

• Patricia Grubel, Los Alamos National Laboratory (USA)

• Kevin Huck, University of Oregon (USA)

• Pedro Valero Lara, Oak Ridge National Laboratory (USA)

• Dirk Pflüger, University of Stuttgart (Germany)

• Metin H. Aktulga, Michigan State University (USA)

• Roman Iakymchuk, Sorbonne Universite (France)

• Huda Ibeid, Intel

• Ben Bergen, Los Alamos National Laboratory (USA)

• Dirk Pleiter, KTH Royal Institute of Technology (Sweden)

• Didem Unat, Koç University (Turkey)

• Keita Teranishi, Sandia National Laboratories (USA)

• Abhinav Bhatele, University of Maryland, College Park (USA)

• Daisy Hollman, Google

• Gregor Daiß, University of Stuttgart (Germany)

• Najoude Nader, Louisiana State University (USA)

• Rod Tohid, Louisiana State University (USA)

• Dominic Marcello, Louisiana State University (USA)

• Sebastian Ohlmann, Max Planck Computing & Data Facility (Germany)

• Weile Wei, Lawrence Berkeley National Laboratory (USA)

• Jeff Hammond, NVIDIA (Finland)

iv

Logistics

• Karen Jones and Jennifer Claudet, Louisiana State University

v

vi

Welcome Address

It is my distinct pleasure to welcome you all to the Workshop on Asynchronous
Many-task Systems and Applications (February 15-17, 2023) held at the Center for
Computation and Technology (CCT) on the Louisiana State University campus in
Baton Rouge, Louisiana.

I am pleased to be able to support and co-sponsor this workshop along with a num-
ber of others: Tactical Computation Labs, the National Science Foundation, and
Hewlett Packard Enterprise. We at CCT greatly appreciate the support of our co-
sponsors. I would like to thank the great work of the organizers of this workshop,
Dr. Patrick Diehl, Dr. Hartmut Kaiser, Dr. Gerald Baumgartner, and Dr. Steven R.
Brandt. In addition, special thanks to Dr. Robert Twilley, Interim Vice-President
of Research at LSU for the continuing strong support of CCT.

The objectives of this workshop are to bring together experts in asynchronous many-
task frameworks, developers of science codes, performance experts, and hardware
vendors to discuss the state-of-the-art techniques needed to program, analyze, bench-
mark, and profile these codes to achieve maximum performance possible on modern
machines. This workshop will promote a dialogue between these communities and
help identify challenges and opportunities for advancement in all the disciplines they
represent.

I would like to thank the three excellent keynote speakers, Prof. Michelle Strout
(University of Arizona and HPE), Dr. Damian Rouson Lawrence Berkeley National
Laboratory), and Prof. George Bosilca (University of Tennessee, Knoxville), who
are world-class experts in the field, for sharing their thoughts. In addition, I thank
all the participants.

I sincerely hope you enjoy and benefit from this unique workshop and the discussion
sessions during the coming two and a half days.

With best wishes,
J. “Ram” Ramanujam

vii

viii

Contents

Welcome Address vii

Industrial talk 1
An Azimuth to RISC-V HPC (Chris Taylor) 1

Session Chairs 3

Talks 5
Application Examples of Leveraging Task Parallelism with Chapel (Michelle Strout) 5
Framework for Extensible, Asynchronous Task Scheduling (FEATS) in For-

tran (Brad Richardson) . 6
Command Horizons: Coalescing Data Dependencies while Maintaining

Asynchronicity (Peter Thoman) . 7
Performance Portability using Standard C++ with SYCL (Hugh Delaney) 8
Khronos SYCL heterogeneous programming for future codesign with RISC-

V, HPC, and AI (Michael Wong) . 9
Qthreads: A Lightweight Threading Library for the Many-core Era (Jan Ciesko) 10
Kokkos’ Role for Performance Portability in AMT Systems (Christian Trott) 11
HPX - A C++ Library for Parallelism and Concurrency (Hartmut Kaiser) 12
PGAS: A View from Berkeley (Damian Rouson) 13
Efficiency and raw speed vs generality and versatility in parallel program-

ming models (Laxmikant (Sanjay) Kale) 14
Recent FleCSI Developments (Ben Bergen) 15
FleCSI: Scalability Studies and Challenges (Sumathi Lakshmiranganatha) 16
Active Memory Architecture for Asynchronous Graph Processing (Thomas Ster-

ling) . 17
Scheduling Many-task Applications on Multi-clouds and Hybrid Clouds

(Peter Franz) . 18
Lessons Learned From Writing Task-Based Libraries (Alex Aiken) 20
MatRIS: A fully agnostic solution for BLAS and LaPACK codes using the

IRIS runtime (Pedro Valero-Lara) 21
Heterogeneous distributed runtimes for fine-granularity tasks: A possible

revolution in parallel programming (George Bosilca) 22
HPX and Kokkos: unifying asynchrony and portability on the path towards

standardization (Mikael Simberg) . 23
Portable Uintah framework for heterogeneous, asynchronous many-task

runtime systems for Exascale Architectures (Abhishek Bagusetty) . . 24

ix

Matrix Multiplication using Hedgehog’s data flow graphs on multi-node
GPU architectures (Nitish Shingde) 25

Octo-Tiger: An HPX Based Code for Modelling Three-Dimensional Self-
Gravitating Fluids (Dominic Marcello) 26

Posters 29
Efficient Message Passing Support for Asynchronous Many-Task Systems

(Jiakun Yan) . 29
Evaluating and Improving Shared Memory Performance of HPX and OpenMP

using Task Bench (Ioannis Gonidelis) 29
Performance analysis and optimization on adapted Rotate algorithm (Chuan-

qiu He) . 30
The Guardian Language (Max Morris) . 31
Configuring performance of standard parallel algorithms using HPX (Karame Mo-

hammadiporshokooh) . 31
Computational feasibility of simulating radiation induced changes in vas-

culature and blood flow rates (Maxwell Cole) 32

Additional information 35
Addresses . 35
Restaurants . 35

Author Index 37

x

Industrial talk

An Azimuth to RISC-V HPC 27th

Chris Taylor

Tactical Computing Lab

The RISC-V community has ratified several ISA extensions creating a viable path for
the co-design, implementation, and production of RISC-V HPC hardware. In light
of availability of a path to RISC-V HPC hardware, Tactical Computing Labs will
present an introduction to the RISC-V, highlight portions of the ISA specification
most relevant to the HPC community, present an overview of the current state of
RISC-V HPC software, and identify avenues for the HPC runtime system community
to engage with the RISC-V community.

1

2

Session Chairs

• Keynote 1, Patrick Diehl

• Session 1 (Wed 10:30 to 12:20), Hartmut Kaiser

• Session 2 (Wed 2:00 to 3:30), Gerald Baumgartner

• Keynote 2, Hartmut Kaiser

• Session 3 (Thu 10:00 to 12:30), Patrick Diehl

• Session 4 (Thu 2:00 to 3:30), Patricia Grubel

• Keynote 3, Steven R. Brandt

• Session 5 (Fr 10:30 to 12:30), Steven R. Brandt

3

4

Talks

Note that blue names indicate virtual talks.

Application Examples of Leveraging Task Parallelism with
Chapel 15th

9:00 AM–10:00 AM

Michelle Strout

HPE

The Chapel programming language provides constructs for expressing a wide range
of parallelism patterns, while also remaining easy-to-use. This talk will show us-
age examples from machine learning, data analytics, aeronautical engineering, hy-
drology, and other application areas. Perspectives of how existing workflows were
adjusted to leverage Chapel and the resulting performance and scaling will also be
presented.

5

Framework for Extensible, Asynchronous Task Scheduling
(FEATS) in Fortran15th

10:30 AM–11:00 AM

Brad Richardson

Archaeologic, Inc.

Co-Authors: Damian Rouson, Harris Snyder, and Robert Singleterry

Modern Fortran empowers developers to express parallel algorithms without directly
referencing lower-level parallel programming models. Fortran’s parallel program-
ming features place Fortran within the Partitioned Global Address Space (PGAS)
class of languages. Prior to the introduction of the parallel features of modern
Fortran, most parallel scientific programs hardwired compiler directives (pragmas),
run-time library procedure calls, and compiler-specific language extensions directly
into the Fortran source code. Examples include Message Passing Interface (MPI)
procedure calls, OpenMP compiler directives and compiler-specific CUDA Fortran.
For data-parallel problems, application developers typically find it straightforward
to implement their own parallel algorithms. Software that perform complex, het-
erogeneous, staged calculations, however, pose a much greater challenge. Such ap-
plications require careful coordination of the calculations of task dependencies as
prescribed by directed acyclic graphs. In these cases, rolling one’s own solution
proves difficult and finding a customizable framework to extend becomes attractive.

To the best of our knowledge, FEATS is the first framework of its kind in mod-
ern Fortran. This paper discusses the techniques used in implementing FEATS. It
describes the methods used for coordinating execution of tasks between images. It
also describes the methods used to communicate data between tasks. The paper
presents the positive and negative aspects of the approach, along with the beneficial
features and shortcomings of the Fortran language. We describe what a user of
the framework must provide, and how this is done, including presenting a working
example.

6

Command Horizons: Coalescing Data Dependencies while
Maintaining Asynchronicity 15th

11:00 AM–11:30 AM

Peter Thoman

University of Innsbruck

Co-Authors: Philip Salzmann

The highest tiers of performance and efficiency in contemporary large-scale HPC
systems are generally achieved by accelerator clusters, which are commonly pro-
grammed with low-level or vendor-specific approaches such as MPI+CUDA. The
Celerity runtime system provides a data-flow-centric high-productivity API for im-
plementing HPC applications on such clusters, based on the established SYCL indus-
try standard. It is designed to alleviate the development and maintenance burdens
inherent in distributed memory systems as well as those introduced by accelerator
programming.

A core feature of Celerity is the declarative specification of any given task’s
resource requirements with so-called ”range mappers”, which can be provided either
in terms of existing patterns, or more freely constructed with functors. Based on only
this information, the Celerity system asynchronously builds a task and distributed
command graph at runtime, transparently splitting kernels across multiple nodes
and performing the required data transfers.

In order to implement this automatic data dependency computation and com-
mand generation, the runtime system needs to precisely track the state of each
distributed data buffer and its content in the system. This imposes challenges on
the algorithms and data structures employed, particularly when scaling deeper – i.e.
more time steps – and with access patterns that generate new data and require a
growing subset of it.

In this talk, we will present Task Horizons, a concept implemented in the Celer-
ity system which allows capping the depth complexity axis of data structures with
a freely configurable trade-off between structural complexity, and the level of asyn-
chronicity possible during execution.

7

Performance Portability using Standard C++ with SYCL15th
11:30 AM–12:00 PM

Hugh Delaney

Codeplay Software

The proliferation of accelerators, in particular GPUs, over the past decade is im-
pacting the way software is being developed. Most developers who have been using
CPU based machines are now considering how it’s possible to improve the per-
formance of applications by offloading execution to many core processors. Many
emerging disciplines including AI, deep neural networks and machine learning have
shown that GPUs can increase performance by many times compared to CPU-only
architectures. New hardware features such as ”tensor cores” are also starting to
emerge to address specific problems including mixed precision computing. The new
challenge for developers is figuring out how to develop for heterogeneous architec-
tures that include GPUs made by different companies. Currently the most common
way to develop software for GPUs is using the CUDA programming model but this
has pitfalls. CUDA uses non-standard C++ syntax and semantics, is a proprietary
interface, and can only be used to target Nvidia GPUs. Alternatives include HIP
which offers another proprietary programming interface only capable of targeting
AMD GPUs.

This presentation will demonstrate how standard C++ code with SYCL can be
used to achieve performance portability on processors from multiple vendors includ-
ing Nvidia GPUs, AMD GPUs and Intel GPUs. The SYCL programming interface
is a royalty free and industry defined open standard designed to enable the latest
features of accelerators. Using an open source project, we’ll show how standard
C++ syntax and semantics are used to define the SYCL kernel and memory man-
agement code required to offload parallel execution to a range of GPUs. Further to
this, we’ll explain how easy it is to compile this C++ code using a SYCL compiler
so that it can be run on Nvidia, AMD and Intel GPUs and compare this execu-
tion performance with the same code written using proprietary CUDA and HIP
environments.

8

Khronos SYCL heterogeneous programming for future
codesign with RISC-V, HPC, and AI 15th

12:00 PM–12:30 PM

Michael Wong

Codeplay Software

SYCL is the Khronos heterogeneous programming language that is selected for mul-
tiple DOE Exascale programming model including Aurora, Perlmutter, and Frontier.

By focusing on open ISO languages such as C++ with the addition of het-
erogeneous offloads to support the newest accelerator hardware, this talk aims to
showcase how SYCL can also become an open standard for HPC and AI. In that
respect, Kokkos, and HPX have both been built on top of SYCL.

Technology trends require software/hardware co-design for HPC and AI systems.
Open-standard software programming models such as Khronos SYCL and oneAPI
enables this co-design and allows us to support initiatives such for parallelism and
acceleration for Exascale computing. In future, we plan to support RISC-V® pro-
cessors as accelerators for HPC and Datacenter and Cloud Computing.

9

Qthreads: A Lightweight Threading Library for the
Many-core Era15th

2:00 PM–2:30 PM

Jan Ciesko

Sandia National Laboratories

Co-Authors: Stephen Olivier and Ronald Brightwell

Qthreads is a parallel programming library based on user-level threading. It offers a
rich API for thread management and synchronization. The API enables expression
of producer-consumer relationships and of parallel patterns. Locality-aware opti-
mizations are available through a set of task schedulers with optional work stealing.
Qthreads is used in several downstream projects, including HPE’s runtime system
for Chapel, and serves as a platform for pioneering novel programming model fea-
tures, resource-aware scheduling techniques, and interoperability. In this talk, we
give an introduction to Qthreads and explain relevant concepts and design choices
of the interface and implementation. Further, we discuss a representative use case.
Finally, we provide an overview of the current research areas and conclude the talk
with an invitation to engage with the community. SNL is managed and operated
by NTESS under DOE NNSA contract DE-NA0003525.

10

Kokkos’ Role for Performance Portability in AMT Systems 15th
2:30 PM–3:00 PM

Christian Trott

Sandia National Laboratories

Kokkos is at its core a data parallel C++ Programming Model designed for Perfor-
mance Portability. Originally developed at Sandia National Laboratories, it is now
maintained by an open-source development team spanning multiple US National
Laboratories. Today, Kokkos is commonly used in high performance computing
applications and libraries in conjunction with MPI. This mix of MPI and Kokkos
establishes a clear separation of concerns: Kokkos is used to expose fine grained data
parallelism, which can be mapped portably to all common HPC hardware architec-
tures, while MPI deals with coarse grained parallelism - in particular at an inter-node
level. This talk will discuss how Kokkos could - and likely should - play the same
role for asynchronous many-task models. To that end the presentation will review
the high-level design of Kokkos integration into Legion, HPX, and Uintah, and point
out opportunities of leveraging capabilities in the larger Kokkos EcoSystem such as
portable tools and math library support.

11

HPX - A C++ Library for Parallelism and Concurrency15th
3:00 PM–3:30 PM

Hartmut Kaiser

Louisiana State University

With the advent of modern computer architectures characterized by – amongst
other things – many-core nodes, deep and complex memory hierarchies, heteroge-
neous subsystems, and power-aware components, it is becoming increasingly dif-
ficult to achieve best possible application scalability and satisfactory parallel effi-
ciency. The community is experimenting with new programming models that rely on
finer-grain parallelism, and flexible and lightweight synchronization, combined with
work-queue-based, message-driven computation. The recently growing interest in
the C++ programming language in industry and in the wider community increases
the demand for libraries implementing those programming models for the language.

In this talk, we present HPX – A C++ Standards Library for Parallelism and
Concurrency that is built around lightweight tasks and mechanisms to orchestrate
massively parallel (and – if needed – distributed) execution. We also implement
a full set of standard parallel algorithms and related asynchronous extensions to
those. The library enables an asynchronous execution model that uses the concept
of (Standard C++) futures to make data dependencies explicit, employs explicit and
implicit asynchrony to hide latencies and to improve utilization, and manages finer-
grain parallelism with a work-stealing scheduling system enabling automatic load
balancing of tasks. Lately we have been experimenting with the new sender/receiver
model that is currently being discussed as part of the C++ standardization process.

HPX is a C++ library exposing a higher-level parallelism API that is fully con-
forming to the existing C++11/14/17/20 standards and is aligned with the ongoing
standardization work. This API and programming model has shown to enable writ-
ing highly efficient parallel applications for heterogeneous resources with excellent
performance and scaling characteristics. This talk will highlight the implemented
extensions to the C++ standard parallel algorithms and shows recent performance
results.

12

PGAS: A View from Berkeley 16th
9:00 AM–10:00 AM

Damian Rouson

Lawrence Berkeley National Laboratory

Partitioned Global Address Space (PGAS) programming models, languages, and
libraries offer HPC software developers a set of abstractions that facilitate paral-
lel communication and computation, including remote memory access and remote
procedure calls. This talk will give a high-level overview of PGAS research and
development at Berkeley Lab, covering our contributions to the PGAS software
ecosystem, including our work on unit tests for the PGAS features in the LLVM
Flang Fortran compiler; creating the Caffeine coarray Fortran parallel runtime li-
brary [1]; producing the UPC++ PGAS template library [2]; and developing the
GASNet-EX exascale networking middleware that supports a range of PGAS lan-
guages, libraries, and frameworks [3]. The talk will also highlight the use of the
aforementioned technologies in task-scheduling frameworks, including FEATS [4],
Legion [5], and DepSpawn [6].

13

Efficiency and raw speed vs generality and versatility in
parallel programming models16th

10:30 AMM–11:00 PM

Laxmikant (Sanjay) Kale

University of Illinois Urbana-Champaign

When we design parallel programming systems (languages, libraries and abstractions
in general), we are faced with a multitude of use-cases, some arising from applica-
tions and some arising from community micro-benchmark suites. Initially, the focus
of a developer is to support a narrow set of these. As the utility of the system
broadens and additional applications come in to its ambit, the system needs to add
new features and generalize existing features. Such additions tend to have a detri-
mental impact on performance. This challenge is especially acute for asynchronous
task-based systems for a variety of reasons. This talk will deal with challenges of
dealing with this tradeoff and potential solution strategies for it. It will build upon
our experience with the Charm++ software stack, which also includes associated
abstractions including Adaptive MPI.

14

Recent FleCSI Developments 16th
11:00 AM–11:30 AM

Ben Bergen

Los Alamos National Laboratory

FleCSI is a task-based runtime abstraction layer that provides a single-source pro-
gramming model for shared and distributed-memory parallelism. FleCSI also pro-
vides several user-configurable data structures that can be combined to create cus-
tom interfaces for multi-physics application development. This talk will provide an
overview of recent improvements and new capabilities, including a new tracing in-
terface, support for arbitrary color-to-process mappings, and support for upcoming
accelerated system architectures.

15

FleCSI: Scalability Studies and Challenges16th
11:30 AM–12:00 PM

Sumathi Lakshmiranganatha

Los Alamos National Laboratory

Co-Authors: Benjamin Bergen, Andrew Reisner, and Jonathan Pietarila Graham

The Flexible Computational Science Infrastructure (FleCSI) is a compile-time con-
figurable framework for multi-physics applications development. FleCSI provides an
abstraction layer to control different runtime interfaces, e.g., Legion, MPI and HPX
for distributed-memory execution, and Kokkos and Kitsune for shared-memory exe-
cution. This presentation discusses the results of some scalability studies of iterative
solvers developed on FleCSI comparing the Legion and MPI backends. We will share
some of the challenges we encountered in completing this work.

16

Active Memory Architecture for Asynchronous Graph
Processing 16th

12:00 PM–12:30 PM

Thomas Sterling

Indiana State University

The leading-edge of High Performance Computing is challenged by the end of
Moore’s Law and new applications’ demands in, among other areas, ”AI” as the
term is being currently employed in the common lexicon. Special Purpose Devices
and, in some cases, entire new class of systems have attracted significant investment
in recent years with the intent of meeting the rapidly growing demand (at least in
appearance) for supervised machine learning platforms. More generally, for both
dynamic numeric and informatic problems, the basic data structure may not be
sparse matrices but rather time-varying and irregular graphs. AMR and N-body
numeric problems and unsupervised machine learning, contextual natural language
processing, searches, sorting, hypothesis testing, decision making, and a host of NP
complete problems requiring non-deterministic but convergent solutions make up
a wide-array of present and future workflows requiring new large-scale solutions.
An innovative class of memory-centric architectures are emerging as a research fo-
cus to address both dimensions of the design and operation space. One such is
the “Active Memory Architecture” under development as an example of a novel
memory-centric system incorporating non von Neumann architecture structures, se-
mantic constructs, graph and runtime related overhead primitive mechanisms, and
runtime resource management and task scheduling methods. This advanced tech-
nical strategy has been sponsored by NASA and is supported by IARPA/ARO.
The fundamental principles and planned methods being undertaken with the intent
of modeling, simulation, and evaluation will be presented along with a completed
FPGA-based graph accelerator prototype.

17

Scheduling Many-task Applications on Multi-clouds and
Hybrid Clouds16th

2:00 PM–2:30 AM

Peter Franz

Louisiana State University

Co-Authors: Peter Franz and Gerald Baumgartner

Cloud computing has been very successful for many types of applications, especially
for applications that do not require frequent communication between different cloud
nodes, such as MapReduce or graph-parallel algorithms. One of the advantages of
cloud computing over a cluster or local supercomputer is its low cost, in particular
when using virtual resources. However, for applications with fine-grained paral-
lelism, it shows less than satisfactory performance. Renting dedicated clusters from
cloud providers is expensive and virtual resources are heterogeneous in performance
and latency.

A solution to running high-performance applications in the cloud is to struc-
ture them as many-task applications and to match the performance requirements of
tasks to the available performance characteristics of cloud nodes. Since this requires
periodic performance and latency measurements, a centralized task scheduler can
become a bottleneck for large applications with fine-grained parallelism.

In previous research, we have demonstrated that a decentralized task scheduler
can successfully distribute the tasks onto cloud nodes without the bottleneck of a
centralized scheduler. The disadvantage of a decentralized scheduler is that it cannot
guarantee perfect resource utilization: occasionally nodes can become temporarily
idle.

For our scheduling approach, worker nodes are connected in an overlay graph.
Each node periodically measures its performance and communication latency with
neighbors on the graph and sends this information as well as the length of its task
queue to its neighbors. After collecting the performance information from its neigh-
bors, each node then normalizes the measurement results and plots them on a multi-
dimensional grid. Spare tasks in the task queue are then sent to better-performing
nodes, i.e., to nodes with shorter tasks queues, higher performance, and/or lower
latency. This is achieved by comparing the difference between the node’s own mea-
surement results and a neighbor’s measurement results with the desired direction or
vector in which tasks should travel.

In previous research, we have demonstrate that this vector-scheduling works
best if the underlying overlay graph reflects the distances between nodes. Clusters
of nodes with low communication latency between them (e.g., if they reside in the
same CPU or the same rack) are connected in a full graph. Between clusters of
more distant nodes (e.g., at different ends of the warehouse-sized data center or at
different cloud sites) there are fewer connections on the overlay graph to avoid tasks
being shipped back and forth between distant nodes.

18

We have run experiments in CloudLab with both simulated and actual differences
in performance and communication latency. As demo application, we have used
sets of matrix multiplications of varying sizes. Our experiments demonstrate that
the vector-scheduling approach results in good resource utilization and good load
balancing of the tasks on the worker nodes.

Recently, we have implemented support in our cloud platform for scheduling tasks
on multi-site clouds as well as on hybrid clouds. For this paper, we will concentrate
on measurements demonstrating the feasibility of running many-task applications
on multi-clouds and hybrid clouds.

19

Lessons Learned From Writing Task-Based Libraries16th
2:30 PM–3:00 PM

Alex Aiken

Stanford

This talk will summarize experiences over the last several years in writing task-
based libraries for deep learning, tensor algebra, and solving sparse linear systems,
among others. Because many performance-related decisions in task-based programs
are late-bound, meaning they are left abstract in the program itself and only fixed
when the program is run, it is possible to change these decisions easily, enabling
rapid iteration after a code is written to find the combination of decisions that work
best for a particular execution environment. This ability to productively modify
performance-related decisions and the ability to easily change the partitioning of
data have turned out to be key to achieving state-of-the-art and highly portable
performance.

20

MatRIS: A fully agnostic solution for BLAS and LaPACK
codes using the IRIS runtime 16th

3:00 PM–3:30 PM

Pedro Valero-Lara

Oak Ridge National Laboratory

BLAS & LaPACK are crucial and core computation components in high performance
computing and machine learning applications. Historically, hardware vendors and
researchers have provided optimized math kernels for specific architectures. For this
reason, the application developers have to decide which library and architecture to
use and re-implement thousands of lines of code to port and optimize their codes to
other architectures. Moreover, following the trend of heterogeneity, hardware manu-
facturers and vendors are releasing new architectures and their proprietary libraries
that can harness the best possible performance for commonly linear algebra kernels.
However, tuned kernels for one architecture are not portable to others. Moreover, the
coexistence of different architectures in a single node made orchestration difficult.
To address these challenges, we introduce MatRIS, a portable framework for BLAS
& LaPACK functionalities. MatRIS ensures a separation between linear algebra
algorithms and vendor library kernels using IRIS runtime. Such abstraction at the
algorithm level makes implementation completely vendor-library and architecture
agnostic. MatRIS uses IRIS runtime to dynamically select the vendor-library kernel
and suitable processor architecture at runtime. We demonstrate that MatRIS can
fully utilize different heterogeneous systems by launching and orchestrating different
vendor-library kernels without any change in the source code.

This research reports the following contributions:
1- Improve portability and productivity for BLAS & LaPACK codes by separat-

ing the algorithm description (application details) from the implementation, tasks
mapping (hardware features), and vendor library kernels.

2- Efficient utilization of different heterogeneous systems with a large number of
computing components without changing one line of code.

3- Performance study of the MatRIS implementation on three different hetero-
geneous systems; one NVIDIA DGX-1 system with 1× Intel CPU and 4× NVIDIA,
one node of the fastest TOP5001 supercomputer today, the ORNL’s supercomputer
Frontier, with 1× AMD CPU (64 cores) and 8× AMD GPUs, and one extreme het-
erogeneous system with 1× AMD CPU, and 8× GPUs (4× NVIDIA GPUs + 4×
AMD GPUs).

21

Heterogeneous distributed runtimes for fine-granularity
tasks: A possible revolution in parallel programming17th

9:00 AM–10:00 AM

George Bosilca

University of Tennessee, Knoxville

Challenges introduced by highly hybrid many-cores architectures have a lasting im-
pact on the portability and performance of applications, partially due to traditional
programming paradigms. These programming paradigms lack the flexibility and
capabilities required to deal with large amounts of potential parallelism and a dy-
namic hybrid execution environment, putting the performance and scalability of
applications at risk. Advances in task-based runtime have shown to provide a plau-
sible solution to this problem, one that not only increase the domain scientists’
productivity but also deliver codes that are more efficient, more scalable, and more
adaptable to various hardware architectures, and show an increased portability po-
tential to transition from one generation of hardware to another. This talk will
describe a distributed task-based runtime, PaRSEC, and highlight its data man-
agement strategies and features to allow the implementation of highly efficient and
scalable algorithms at any scale.

22

HPX and Kokkos: unifying asynchrony and portability on
the path towards standardization 17th

10:30 AM–11:00 AM

Mikael Simberg

Swiss National Supercomputing Centre

Co-Authors: Gregor Daiß

Modern hardware architectures are increasingly parallel, through both massively
multicore CPUs and accelerators which often dominate the available compute on
the newest nodes. Utilizing this hardware fully is increasingly difficult with tradi-
tional programming models. At the same time the hardware landscape has further
diversified which increases the burden on application developers to run their appli-
cations anywhere. HPX, a tasking runtime with a focus on distributed applications
and standards conformance, is ideally suited to tackle the first challenge. Kokkos, a
performance portability layer, handles the second. However, using them together has
not been straightforward until the integrations presented here. This talk presents
the integration of HPX and Kokkos on multiple different levels with: 1. an HPX
backend for Kokkos, which is the first asynchronous CPU backend for Kokkos; 2.
HPX-Kokkos, a thin interoperability layer which combines primitives provided by
HPX and Kokkos; and 3. The integration of all of the former into Octo-Tiger,
an astrophysics application. The integration allows applications to make full use
of the portability provided by Kokkos and move past the limitations of fork-join
parallelism with the tasking provided by HPX. Finally, this talk will present the
latest integration of the C++ std::execution proposal for asynchrony into HPX and
Kokkos, and how it provides a path towards a standardized solution for portability
and asynchrony in applications like Octo-Tiger.

23

Portable Uintah framework for heterogeneous,
asynchronous many-task runtime systems for Exascale

Architectures17th
11:00 AM–11:30 AM

Abhishek Bagusetty

Argonne National Laboratory

Co-Authors: John Holmen and Martin Berzins

The Uintah Computational Framework is being prepared to make portable use of
current and emerging exascale systems, initially the DOE Aurora system through the
Aurora Early Science Program. While Uintah’s tasks have been ported to Kokkos
for performance portability, Uintah’s task scheduling infrastructure is not yet wholly
portable. This paper describes the evolution of Uintah’s task scheduling approach to
be ready for such architectures. As a part of this, Uintah’s Unified Scheduler, which
uses raw CUDA, has been ported to HIP and SYCL to help better understand
what abstractions are needed to develop a wholly portable task scheduler. This
paper extends recent work by exploring performance portability on AMD and Intel
GPUs. Results are shown for a benchmark executing workloads representative of
typical Uintah application across ALCF and OLCF systems. The latest state of
Uintah’s support for Kokkos and challenges relating to preparing single-source code
for AMD-, Intel-, and NVIDIA-based GPUs are also discussed

24

Matrix Multiplication using Hedgehog’s data flow graphs on
multi-node GPU architectures 17th

11:30 AM–12:00 PM

Nitish Shingde

University of Utah

Co-Authors: Martin Berzins, Timothy Blattner, Walid Keyrouz, and Alexandre
Bardakoff

Asynchronous task-based systems offer the possibility of modeling better use of large-
scale heterogeneous architectures. One such example is the Uintah framework. At
this time hedgehog library of NIST presents excellent single-node performance and
low overhead using the data flow graphs approach. This paper combines the two
methods and evaluates their performance on multi-node GPU architecture using
matrix-matrix multiplication. The algorithm builds on the hedgehogs’ previous
single-node implementation based on the outer product approach and expands it to
multi-node architectures using MPI. To evaluate this approach, we compared the
performance results against the SLATE and DPLASMA software which implement
generic matrix multiplication in similar environments.

25

Octo-Tiger: An HPX Based Code for Modelling
Three-Dimensional Self-Gravitating Fluids17th

12:00 PM–12:30 PM

Dominic Marcello

Louisiana State University

Co-Authors: Patrick Diehl, Gregor Daiss, Sagiv Shiber, and Hartmut Kaiser

Octo-Tiger is an AMT based tool for modelling three-dimensional self-gravitating
astrophysical fluids. It was designed to be particularly suited for modelling inter-
acting binary star systems. It uses a finite volume technique to model the hydro-
dynamics and the fast multipole method to model the gravity. It is written entirely
in C++ and uses HPX (High Performance ParalleX) for both node-level and dis-
tributed parallelism. The hydrodynamics and gravity modules have scalar, CUDA,
HIP, and Kokkos (with SIMD support) implementations Octo-Tiger has been exe-
cuted on a wide range HPC platforms including Japan’s Fugaku, NERC’s CORI and
Perlmutter, ORNL’s Summit, and CSCS’s PizDaint. Here we will briefly describe
Octo-Tiger, show some scientific results from a double white dwarf merger, and
highlight our efforts to optimize the code. We will also outline the recent addition
of a radiation transport module using explicit time integration and a two-moment
closure relation.

26

27

28

Posters

Efficient Message Passing Support for Asynchronous
Many-Task Systems

Jiakun Yan

University of Illinois Urbana-Champaign

Co-Authors: Marc Snir
The communication behaviors of asynchronous many-task systems are usually
irregular and happen in a multithreaded environment. This leads to some
mismatches between what task systems want and what their underlying

communication libraries offer, leading to inefficiencies such as poor multithreaded
performance, unnecessary memory copies and messages, unpredictable background

task processing, and inefficient polling for completion. We are developing a
low-level communication library, Lightweight Communication Interface (LCI), to
explore ways to eliminate these mismatches and provide direct communication
support to task systems. LCI’s features include (a) flexible communication

primitives and signaling mechanisms (b) better-multithreaded performance (c)
explicit user control of communication resources. We are working on creating an

LCI parcelport for HPX. We will report our current progress in this poster.

Evaluating and Improving Shared Memory Performance of
HPX and OpenMP using Task Bench

Ioannis Gonidelis

STE||AR Group

Numerous benchmarking efforts have been made to compare both qualitatively
and quantitatively, the large variety of asynchronous runtime systems available in
the community. A standardized benchmarking solution, Task Bench, is being

deployed in this research to explore the shared memory concurrency performance
between two analogous Asynchronous Many-Task (AMT) systems: OpenMP and a
C++ standard library for parallelism and concurrency (HPX). In this work, we

focus on the shared memory features of HPX and neglect the distributed memory
features. Based on the results of this analysis, we expose the characteristics

relative to both interfaces and scheduling mechanisms of each system that inhibit

29

performance, and we present the corresponding improvements applied. Efficiency
of the implemented testing ground, proper interfacing for asynchrony, and

thorough examination of the scheduling can lead to significant performance gain in
both systems and showcase shifting of any original measurements. In this research,
we are not only trying to emphasize on the on-node performance of the two AMTs
on top of Task Bench, but we are also trying to provide the community with a
state-of-the-art guidance on how to minimize overheads in parallel code and

emphasize the broadness of potential performance barriers.

Performance analysis and optimization on adapted Rotate
algorithm

Chuanqiu He

Louisiana State University

The C++ standard defines many algorithms. Usually, a new C++ standard is
updated every three years. HPX library needs to follow the C++ code
standardization to support sequential and parallel implementation for all

algorithms. But some of the HPX algorithms didn’t adapt to the latest C++20
standard. I adapted rotate algorithms using the tag invoke CPO mechanism to

add the correct overloads for the algorithms as mentioned by the C++20 standard.
Moreover, further optimize the adapted rotate according to the characteristics of
rotate implementation by implementing core partition functionality, which enables
left and right elements to be processed to obtain the corresponding proportion of a
number of cores as needed. Then compare the speedup of rotate algorithm under
different policies (parallel, sequential) and optimized rotate. More specifically,
creating a benchmark for rotate algorithm and testing its performance changes
when tweaking different parameters (like input size and the number of threads,
chunk size). The performance of parallel rotate is much better than that of

sequential rotate. And also, the core partition functionality worked, and rotate
performance improved by about 15%.

30

The Guardian Language

Max Morris

Louisiana State University

Co-Authors: Steven R. Brandt
Guardian is a parallel programming language that compiles to Java, designed to
work with the Javalin parallel programming library. Javalin provides a framework
for parallel programming which is non-blocking, composable, orderable, compatible
with fork-join pools, and free of deadlocks, all with minimal overhead. However,

developing in Javalin requires an asynchronous continuation style of programming.
This paradigm is indirect, involves deep nesting of lambdas, and requires adherence
to contracts that are impossible to enforce in plain Java. Writing Javalin code in
plain Java can be unintuitive and error-prone. Guardian aims to mend these

concerns; the language introduces new, yet familiar syntax on top of Java to allow
programming in a style more familiar to Java developers. It also prevents errors
and pitfalls by enforcing Javalin’s contracts at compile-time, guaranteeing safety.

Configuring performance of standard parallel algorithms
using HPX

Karame Mohammadiporshokooh

Louisiana State University

HPX is a fully Asynchronous Many Task (AMT) runtime system extending the
C++ programming language. HPX provides lightweight user-level tasks that run
on top of kernel threads. In this poster we add configurations that tweak HPX’s

parallel algorithms and observer how performance is affected by that. Since
different types of base algorithms (scan based, iterative, bulk etc) are exposed

through the standard parallel algorithms we experiment with selectivity of cache
and chunk size in order to achieve an optimal set of parameters for a given set of

algorithms. Although this poster concentrates on a particular sample of an
iterative based algorithm (adjacent difference) the results can be extended

(deduced) accordingly within this set. The performance measurements presented in
this poster deliver useful information to the global community on how to organize
the execution of these sets of algorithms in order to align the different execution
characteristics (architecture, granularity, chunking etc) in favor of performance

31

Computational feasibility of simulating radiation induced
changes in vasculature and blood flow rates

Maxwell Cole

Louisiana State University

Co-Authors: Wayne Newhauser and Patrick Diehl

Background

One of the most common biological effects of radiation is blood vessel damage,
which can lead to deleterious effects such as radiation necrosis or atherosclerotic
heart disease. In recent years, several groups have performed computational blood

flow simulations in the heart. However, these simulations neglected radiation
injury and are limited to the resolution of the imaging modalities, typically around

1-2 millimeters. Other computational methods for modeling radiation dose
deposition and biological response had been applied only in small volumes of
tissue. To understand the systemic effects of radiation on the entire body,
computational methods must surpass greater length and time scales than

previously achieved. In this study we aim to simulate radiation damage and
analyze the effects of the resulting structural changes on blood flow in a system

greater than 34 billion vessels, approximately the size of the human body.

Methods

Vascular Geometry: The vascular geometry of the system is constructed from a
fractal algorithm to generate 3-dimensional scalable vessel networks. The vessels
are represented as rigid, cylindrical tubes connected at junctions to form a closed
network, with symmetric halves comprising of an arterial tree and a venous tree.

Radiation Transport: Radiation transport is simulated using an amorphous
track-structure method to model dose deposition from protons and secondary
ionized electrons, or -rays. The biological response of the impacted vessels is

modeled to fit experimental data. Fluid Dynamics: The resulting changes in blood
flow are calculated utilizing a special case of the Navier-Stokes equation, known as
the Poiseuille equation, for the motion of incompressible Newtonian fluids. The
network is cast as a system of linear equations, and iterative Krylov methods are
used to solve for the blood flow rates of each vessel. Computational Aspects: Due
to the large-scale nature of the project, we must implement high-performance

computing techniques on supercomputer clusters. A single vessel in our system is
approximately 68 bytes. Therefore, representing the geometry of an entire human
body requires over 1 terabyte of memory, greater than typically available on a

single compute node. To overcome this, we will be integrating the High
Performance ParalleX (HPX) C++ library for increased parallelism and

concurrency, developed by our collaborators at the STE||AR group in Louisiana
State University’s Center for Computation and Technology (CCT). HPX is an
Asynchronous Many Task runtime system that has shown superior parallel

efficiency in large-scale projects.

32

Preliminary Results

Preliminary results from our laboratory have shown the computational feasibility
of calculating blood flow in 17 billion vessels. We have also shown the feasibility of
demonstrating whole-organ vascular injury from radiation. This was accomplished
on a vascular network the size of the human brain (9 billion vessels) with dose

simulated by an amorphous track-structure model consisting of 2 million protons.
We are currently generating further preliminary computational results at the

CCT’s Rostam supercomputer cluster.

33

34

Additional information

Addresses

Workshop venue

Digital Media Center, Center for Computation & Technology, 340 E Parker Blvd.,
Baton Rouge, LA 70803

Hotel

The Cook Hotel at LSU, 3848 W Lakeshore Dr, Baton Rouge, LA 70808
(225) 383-2665

Banquet

LSU Faculty Club, 101 Tower Dr, Baton Rouge, LA 70803
(225) 578-2356

Restaurants

Walking distance

• The Chimes – Lively campus-area hangout from a local chain featuring a
worldwide beer list & hearty bar fare: 3357 Highland Rd, Baton Rouge, LA
70802 (225 383-1754)

• Louie’s Cafe – LSU-area fixture dating to 1941 serves a diner menu 24/7 in
a classic lunch-counter setting: 3322 Lake St, Baton Rouge, LA 70802 (225
346-8221)

• Highland Coffees – Charming, airy locale with a laid-back vibe for coffee
roasted on-site & a variety of baked goods: 3350 Highland Rd, Baton Rouge,
LA 70802 (225 336-9773)

Local cuisine

• Parrain’s Seafood Restaurant – Local seafood specialist cooking up Louisiana
recipes in a rustic space with porch seating: 3225 Perkins Rd, Baton Rouge,
LA 70808 (225 381-9922)

35

• Mike Anderson’s - Baton Rouge – Area staple for regional seafood in a spa-
cious, wood-lined setting with a sports-friendly vibe: 1031 W Lee Dr, Baton
Rouge, LA 70820 (225 766-7823)

• Stroubes Seafood and Steaks – Chophouse presenting local preparations of
meat & seafood in comfortable digs with a lounge: 107 3rd St, Baton Rouge,
LA 70801 (225 448-2830)

36

Author Index

Aiken Alex, 20
Bagusetty Abhishek, 24
Delaney Hugh, 8
Kale Laxmikant (Sanjay), 14
Simberg Mikael, 23
Thoman Peter, 7
Trott Christian, 11

Bergen Ben, 15
Bosilca George, 22

Ciesko Jan, 10
Cole Maxwell, 32

Franz Peter, 18

Gonidelis Ioannis, 29

He Chuanqiu, 30

Kaiser Hartmut, 12

Lakshmiranganatha Sumathi, 16

Marcello Dominic, 26
Mohammadiporshokooh Karame, 31
Morris Max, 31

Richardson Brad, 6
Rouson Damian, 13

Shingde Nitish, 25
Sterling Thomas, 17
Strout Michelle, 5

Taylor
Chris, 1

Valero-Lara Pedro, 21

Wong Michael, 9

Yan Jiakun, 29

This work is licensed under a Creative Commons
“Attribution-NonCommercial-NoDerivatives 4.0 Inter-
national” license.

37

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

	Welcome Address
	Industrial talk
	An Azimuth to RISC-V HPC (Chris Taylor)

	Session Chairs
	Talks
	Application Examples of Leveraging Task Parallelism with Chapel (Michelle Strout)
	Framework for Extensible, Asynchronous Task Scheduling (FEATS) in Fortran (Brad Richardson)
	Command Horizons: Coalescing Data Dependencies while Maintaining Asynchronicity (Peter Thoman)
	Performance Portability using Standard C++ with SYCL (Hugh Delaney)
	Khronos SYCL heterogeneous programming for future codesign with RISC-V, HPC, and AI (Michael Wong)
	Qthreads: A Lightweight Threading Library for the Many-core Era (Jan Ciesko)
	Kokkos' Role for Performance Portability in AMT Systems (Christian Trott)
	HPX - A C++ Library for Parallelism and Concurrency (Hartmut Kaiser)
	PGAS: A View from Berkeley (Damian Rouson)
	Efficiency and raw speed vs generality and versatility in parallel programming models (Laxmikant (Sanjay) Kale)
	Recent FleCSI Developments (Ben Bergen)
	FleCSI: Scalability Studies and Challenges (Sumathi Lakshmiranganatha)
	Active Memory Architecture for Asynchronous Graph Processing (Thomas Sterling)
	Scheduling Many-task Applications on Multi-clouds and Hybrid Clouds (Peter Franz)
	Lessons Learned From Writing Task-Based Libraries (Alex Aiken)
	MatRIS: A fully agnostic solution for BLAS and LaPACK codes using the IRIS runtime (Pedro Valero-Lara)
	Heterogeneous distributed runtimes for fine-granularity tasks: A possible revolution in parallel programming (George Bosilca)
	HPX and Kokkos: unifying asynchrony and portability on the path towards standardization (Mikael Simberg)
	Portable Uintah framework for heterogeneous, asynchronous many-task runtime systems for Exascale Architectures (Abhishek Bagusetty)
	Matrix Multiplication using Hedgehog's data flow graphs on multi-node GPU architectures (Nitish Shingde)
	Octo-Tiger: An HPX Based Code for Modelling Three-Dimensional Self-Gravitating Fluids (Dominic Marcello)

	Posters
	Efficient Message Passing Support for Asynchronous Many-Task Systems (Jiakun Yan)
	Evaluating and Improving Shared Memory Performance of HPX and OpenMP using Task Bench (Ioannis Gonidelis)
	Performance analysis and optimization on adapted Rotate algorithm (Chuanqiu He)
	The Guardian Language (Max Morris)
	Configuring performance of standard parallel algorithms using HPX (Karame Mohammadiporshokooh)
	Computational feasibility of simulating radiation induced changes in vasculature and blood flow rates (Maxwell Cole)

	Additional information
	Addresses
	Restaurants

	Author Index

